Monday, 18 May 2015

5.solid state relays

Solid-state relays


As versatile as electromechanical relays can be, they do suffer many limitations. They can be expensive to build, have a limited contact cycle life, take up a lot of room, and switch slowly, compared to modern semiconductor devices. These limitations are especially true for large power contactor relays. To address these limitations, many relay manufacturers offer "solid-state" relays, which use an SCR, TRIAC, or transistor output instead of mechanical contacts to switch the controlled power. The output device (SCR, TRIAC, or transistor) is optically-coupled to an LED light source inside the relay. The relay is turned on by energizing this LED, usually with low-voltage DC power. This optical isolation between input to output rivals the best that electromechanical relays can offer.
Being solid-state devices, there are no moving parts to wear out, and they are able to switch on and off much faster than any mechanical relay armature can move. There is no sparking between contacts, and no problems with contact corrosion. However, solid-state relays are still too expensive to build in very high current ratings, and so electromechanical contactors continue to dominate that application in industry today.
One significant advantage of a solid-state SCR or TRIAC relay over an electromechanical device is its natural tendency to open the AC circuit only at a point of zero load current. Because SCR's and TRIAC's are thyristors, their inherent hysteresis maintains circuit continuity after the LED is de-energized until the AC current falls below a threshold value (the holding current). In practical terms what this means is the circuit will never be interrupted in the middle of a sine wave peak. Such untimely interruptions in a circuit containing substantial inductance would normally produce large voltage spikes due to the sudden magnetic field collapse around the inductance. This will not happen in a circuit broken by an SCR or TRIAC. This feature is called zero-crossover switching.

One disadvantage of solid state relays is their tendency to fail "shorted" on their outputs, while electromechanical relay contacts tend to fail "open." In either case, it is possible for a relay to fail in the other mode, but these are the most common failures. Because a "fail-open" state is generally considered safer than a "fail-closed" state, electromechanical relays are still favored over their solid-state counterparts in many applications.


From a different site:

Opto-coupled devices

Opto Triacs and Solid State Relays.

Devices that are used in the control of high voltage/high power equipment need to have good electrical insulation between their high voltage output and low voltage input. Relying on a layer of silicon a few atoms thick to provide the required insulation, is not really an option in such conditions. When faults occur (and they are more likely to do so in high power circuits) the results can be catastrophic, not only to the circuit components but also to the users of such equipment. Physical isolation (meaning that there is no electricalconnection at all between the input and output) is what is needed. Fortunately there are easy and cheap solutions to this problem. High power circuits are often controlled by "Opto−electronic devices" such as Opto−Triacs, Opto−Thyristors and Solid state relays.
The materials used in the manufacture of Triacs and SCRs, like any semiconductor device, are light sensitive. Their conduction is changed by the presence of light, that´s why they are normally packaged in little chunks of black plastic. However, if a Light Emitting Diode is included within the package that shines its light on a light sensitive semiconductor housed in the same I.C. package, it is possible to control a high power device in response to a very small input current through the LED, without having an electrical connection between the two.

The Opto Triac.

This is the principle used in Opto−Triacs and opto−SCRs, which are readily available in Integrated circuit (I.C.) form, and do not need very complex circuitry to make them work. Simply provide a small pulse at the right time to the Light Emitting Diode in the package. The light produced by the LED activates the light sensitive properties of the Triac or Thyristor gate and the power is switched on. The isolation between the low power and high power circuits in these optically connected devices is typically several thousand volts.

Figure 1. The Opto Triac.

Figure 5. Simple opto triac lamp control using an opto triac integrated circuit

Solid State Relays.

Solid state relay is similar to the opto coupled devices already mentioned, but using power MOSFET transitors as the switching device. Solid State Relays (SSRs) can replace many types of low power electromechanical relays.
It uses opto−coupling to provide complete electrical isolation between its low power input circuit and its high power output circuit. When the output switch is "open" (MOSFETs off) it has a nearly infinite resistance, and a very low resistance when "closed" (MOSFETs conducting heavily). It can also be used to switch either AC or DC currents.

Figure 2. The Solid State Relay.


Typical Solid state Relay
A typical circuit of an SSR is shown in Figure 2. A current of about 20mA through the LED is sufficient to switch on the output MOSFETS. The (infra red) light from the LED falls on the Photovoltaic unit, which comprises 25 silicon diodes. Each diode produces 0.6V to give the 15V gate potential needed to turn on the MOSFETS. Figure 2 represents a basic example of a SSR, in this case the Siemens LH1540T SSR, manufactured as a 6 pin DIL package. Many more complex chips are available that act as double pole, Normally Closed (NC), Normally Open (NO), and Change−over relays with a wide variety of extra facilities. SSRs are also manufactured in a range of output voltages and current ratings, with a range of package types ranging from small surface mount components through complex multi pin chips and large heavy current examples, for rack mounting in electrical control cabinets. Information on SSRs can be found by searching for Solid State Relays on manufacturers websites such as Infineon Technologies or at semiconductor suppliers such as RS Components (opens in a new window)
Download a datasheet for the LH1450 SSR from Datasheet.org.uk

Figure 3. Using a Solid State Relay chip for switching A.C. or D.C.


Figure 7. Methods of connecting a dual MOSFET Solid State Relay chip for A.C. or D.C. switching
Figure 3 shows alternative methods of using the LH1540T SSR for switching either DC or AC power supplies.

Testing opto coupled devices.

The LED in these devices will operate with a forward voltage of between 1V and 2V, the presence of a higher voltage across the LED would indicate an open circuit. LEDs are difficult to test reliably with the diode range of an ohmmeter, since the voltage used is often too low to turn them on. If a correct voltage reading is found across the LED and the output device is not switched on then the IC should be changed. THE WARNINGS APPLYING TO MAINS VOLTAGES ALSO APPLY TO THESE COMPONENTS WHERE THE OUTPUT IS SWITCHING A HIGH VOLTAGE.
ANY WORK ON MAINS POWERED CIRCUITS MUST BE DONE WITH THE MAINS SUPPLY FULLY DISCONNECTED AND ANY CHARGE STORING (e.g. CAPACITORS) COMPONENTS DISCHARGED UNLESS THIS IS ABSOLUTELY UNAVOIDABLE
If you have not been trained in the safe working pactices that are essential for work on these types of circuit DON'T DO IT! The voltages and currents used in these circuits can kill!



Images on them:

Image result for solid state  relays

4.protective relays

we shall discuss on protection relays:

A special type of relay is one which monitors the current, voltage, frequency, or any other type of electric power measurement either from a generating source or to a load for the purpose of triggering a circuit breaker to open in the event of an abnormal condition. These relays are referred to in the electrical power industry as protective relays.
The circuit breakers which are used to switch large quantities of electric power on and off are actually electromechanical relays, themselves. Unlike the circuit breakers found in residential and commercial use which determine when to trip (open) by means of a bimetallic strip inside that bends when it gets too hot from overcurrent, large industrial circuit breakers must be "told" by an external device when to open. Such breakers have two electromagnetic coils inside: one to close the breaker contacts and one to open them. The "trip" coil can be energized by one or more protective relays, as well as by hand switches, connected to switch 125 Volt DC power. DC power is used because it allows for a battery bank to supply close/trip power to the breaker control circuits in the event of a complete (AC) power failure.
Protective relays can monitor large AC currents by means of current transformers (CT's), which encircle the current-carrying conductors exiting a large circuit breaker, transformer, generator, or other device. Current transformers step down the monitored current to a secondary (output) range of 0 to 5 amps AC to power the protective relay. The current relay uses this 0-5 amp signal to power its internal mechanism, closing a contact to switch 125 Volt DC power to the breaker's trip coil if the monitored current becomes excessive.
Likewise, (protective) voltage relays can monitor high AC voltages by means of voltage, or potential, transformers (PT's) which step down the monitored voltage to a secondary range of 0 to 120 Volts AC, typically. Like (protective) current relays, this voltage signal powers the internal mechanism of the relay, closing a contact to switch 125 Volt DC power to the breaker's trip coil is the monitored voltage becomes excessive.
There are many types of protective relays, some with highly specialized functions. Not all monitor voltage or current, either. They all, however, share the common feature of outputting a contact closure signal which can be used to switch power to a breaker trip coil, close coil, or operator alarm panel. Most protective relay functions have been categorized into an ANSI standard number code. Here are a few examples from that code list:


ANSI protective relay designation numbers
12 = Overspeed          
24 = Overexcitation          
25 = Syncrocheck
27 = Bus/Line undervoltage        
32 = Reverse power (anti-motoring)
38 = Stator overtemp (RTD)     
39 = Bearing vibration     
40 = Loss of excitation           
46 = Negative sequence undercurrent (phase current imbalance)
47 = Negative sequence undervoltage (phase voltage imbalance)
49 = Bearing overtemp (RTD)      
50 = Instantaneous overcurrent
51 = Time overcurrent      
51V = Time overcurrent -- voltage restrained
55 = Power factor          
59 = Bus overvoltage 
60FL = Voltage transformer fuse failure
67 = Phase/Ground directional current
79 = Autoreclose
81 = Bus over/underfrequency


  • REVIEW:
  • Large electric circuit breakers do not contain within themselves the necessary mechanisms to automatically trip (open) in the event of overcurrent conditions. They must be "told" to trip by external devices.
  • Protective relays are devices built to automatically trigger the actuation coils of large electric circuit breakers under certain conditions.


Information on protective relays from a different site:



Introduction to Protective Relay

Protective relay works in the way of sensing and control devices to accomplish its function. Under normal power system operation, a protective relay remains idle and serves no active function.
But when fault or undesirable condition arrives Protective Relay must be operated and function correctly.
A Power System consists of various electrical components like Generator, transformers, transmission lines, isolators, circuit breakers, bus bars, cables, relays, instrument transformers, distribution feeders, and various types of loads.
Faults may occur in any part of power system as a short circuit and earth fault. Fault may be Single Line to GroundDouble Line to GroundLine to Line,three phase short circuit etc. This results in flow of heavy fault current through the system.
Fault level also depends on the fault impedance which depends on the location of fault referred from the source side. To calculate fault level at various points in the power system, fault analysis is necessary.
The protection system operates and isolates the faulty section. The operation of the protection system should be fast and selective i.e. it should isolate only the faulty section in the shortest possible time causing minimum disturbance to the system. Also, if main protection fails to operate, there should be a backup protection for which proper relay co-ordination is necessary.
Failure of a protective relay can result in devastating equipment damage and prolonged downtime.


Working Principle of Protective Scheme

Protective relaying senses the abnormal condition in a part of power system and gives an alarm or isolates that part from healthy system. Protective relaying is a team work of CT, PT, protective relays, time delay relays, trip circuits, circuit breakers etc.
Protective relaying plays an important role in minimizing the faults and also in minimizing the damage in the event of faults.
Basic connections of circuit breaker control for the opening operation
Basic connections of circuit breaker control for the opening operation

Figure above shows basic connections of circuit breaker control for the opening operation. The protected circuit X is shown by dashed line. When a fault occurs in the protected circuit the relay connected to CT and PT actuates and closes its contacts.
Current flows from battery in the trip circuit. As the trip coil of circuit breaker is energized, the circuit breaker operating mechanism is actuated and it operates for the opening operation.
Thus the fault is sensed and the trip circuit is actuated by the relay and the faulty part is isolated.


What is Relay?

A relay is automatic device which senses an abnormal condition of electrical circuit and closes its contacts.
These contacts in turns close and complete the circuit breaker trip coil circuit hence make the circuit breaker tripped for disconnecting the faulty portion of the electrical circuit from rest of the healthy circuit.


Functions of Protective Relay

These are the main functions of protective relay:
  1. To sound an alarm or to close the trip circuit of a circuit breaker so as to disconnect Faulty Section.
  2. To disconnect the abnormally operating part so as to prevent subsequent faults. For e.g. Overload protection of a machine not only protects the machine but also prevents Insulation failure.
  3. To isolate or disconnect faulted circuits or equipment quickly from the remainder of the system so the system can continue to function and to minimize the damage to the faulty part. For example – If machine is disconnected immediately after a winding fault, only a few coils may need replacement. But if the fault is sustained, the entire winding may get damaged and machine may be beyond repairs.
  4. To localize the effect of fault by disconnecting the faulty part from healthy part, causing   least disturbance to the healthy system.
  5. To disconnect the faulty part quickly so as to improve system stability, service continuity and system performance. Transient stability can be improved by means of improved   protective relaying.
  6. To minimize hazards to personnel.

Desirable Qualities of Protective Relaying

  1. Selectivity,
  2. Discrimination
  3. Stability
  4. Sensitivity,
  5. Power consumption
  6. System Security
  7. Reliability
  8. Adequateness
  9. Speed & Time


Terminology of protective relay

Pickup level of actuating signal: The value of actuating quantity (voltage or current) which is on threshold above which the relay initiates to be operated. If the value of actuating quantity is increased, the electromagnetic effect of the relay coil is increased and above a certain level of actuating quantity the moving mechanism of the relay just starts to move.
Reset level: The value of current or voltage below which a relay opens its contacts and comes in original position.
Operating Time of Relay: Just after exceeding pickup level of actuating quantity the moving mechanism (for example rotating disc) of relay starts moving and it ultimately close the relay contacts at the end of its journey. The time which elapses between the instant when actuating quantity exceeds the pickup value to the instant when the relay contacts close.
Reset time of Relay: The time which elapses between the instant when the actuating quantity becomes less than the reset value to the instant when the relay contacts returns to its normal position.
Reach of Relay: A distance relay operates whenever the distance seen by the relay is less than the pre-specified impedance. The actuating impedance in the relay is the function of distance in a distance protection relay. This impedance or corresponding distance is called reach of the relay.


History of Protective Relay

The evolution of protective relays begins with the electromechanical relays. Over the past decade it upgraded from electromechanical to solid state technologies to predominate use of microprocessors and microcontrollers.
The timeline of the development of protective relays is shown below:
1900 to 19631963 to 19721972 to 19801980 to 1990
Electromechanical RelayStatic RelayDigital RelayNumerical Relay
1925=Single Disc Type Relay (Single Input)1963=Static Relay  (All Purpose)1980=Digital Type Relay (All Purpose)1990=Numerical Type Relay (All Purpose)
1961=Single Cup Type Relay (Impedance Relay)1972=Static Relay with self checking           (All Purpose)


Types of Relays

Types of protection relays are mainly:

A. Based on Characteristic:

  1. Definite time Relays.
  2. Inverse definite minimum time Relays (IDMT)
  3. Instantaneous Relays
  4. IDMT with Instantaneous.
  5. Stepped Characteristic
  6. Programmed Switches
  7. Voltage restraint over current relay

B. Based on logic:

  1. Differential
  2. Unbalance
  3. Neutral Displacement
  4. Directional
  5. Restricted Earth Fault
  6. Over Fluxing
  7. Distance Schemes
  8. Bus bar Protection
  9. Reverse Power Relays
  10. Loss of excitation
  11. Negative Phase Sequence Relays etc.

C. Based on Actuating parameter:

  1. Current Relays
  2. Voltage Relays
  3. Frequency Relays
  4. Power Relays etc.

D. Based on Operation Mechanism:

1. Electro Magnetic Relay
2. Static Relay……• Analog Relay
……• Digital Relay
……• Numerical /Microprocessor Relay
3. Mechanical relay
  • Thermal• OT Trip (Oil Temperature Trip)
    • WT Trip (Winding Temperature Trip)
    • Bearing Temp Trip etc.
  • Float Type• Buchholz
    • OSR
    • PRV
    • Water level Controls etc.
  • Pressure Switches
  • Mechanical Interlocks
  • Pole discrepancy Relay

E. Based on Applications

  1. Primary Relays
  2. Backup Relays

Types of Relay based on Relay Operation Mechanism

1. Electromagnetic Relay

Electromagnetic relays are further categorized under two following categories.
1.1 Electromagnetic Attraction RelayThis Relay works on Electromagnetic Attraction Principle
1.2 Electromagnetic Induction Relay
This Relay works on Electromagnetic Induction Principle

2. Solid State (Static) Relay

Solid-state (and static) relays are further categorized under following designations:
2.1 Analog Relay
In Analog relays are measured quantities are converted into lower voltage but similar signals, which are then combined or compared directly to reference values in level detectors to produce the desired output.
2.2 Digital RelayIn Digital relays measured ac quantities are manipulated in analogue form and subsequently converted into square-wave (binary) voltages. Logic circuits or microprocessors compare the phase relationships of the square waves to make a trip decision.
2.3 Numerical Relay
In Numerical relays measured ac quantities are sequentially sampled and converted into numeric data form. A microprocessor performs mathematical and/or logical operations on the data to make trip decisions.

3.time- delay relays

Time-delay relays

Some relays are constructed with a kind of "shock absorber" mechanism attached to the armature which prevents immediate, full motion when the coil is either energized or de-energized. This addition gives the relay the property of time-delay actuation. Time-delay relays can be constructed to delay armature motion on coil energization, de-energization, or both.
Time-delay relay contacts must be specified not only as either normally-open or normally-closed, but whether the delay operates in the direction of closing or in the direction of opening. The following is a description of the four basic types of time-delay relay contacts.
First we have the normally-open, timed-closed (NOTC) contact. This type of contact is normally open when the coil is unpowered (de-energized). The contact is closed by the application of power to the relay coil, but only after the coil has been continuously powered for the specified amount of time. In other words, the direction of the contact's motion (either to close or to open) is identical to a regular NO contact, but there is a delay in closing direction. Because the delay occurs in the direction of coil energization, this type of contact is alternatively known as a normally-open, on-delay:

The following is a timing diagram of this relay contact's operation:

Next we have the normally-open, timed-open (NOTO) contact. Like the NOTC contact, this type of contact is normally open when the coil is unpowered (de-energized), and closed by the application of power to the relay coil. However, unlike the NOTC contact, the timing action occurs upon de-energization of the coil rather than upon energization. Because the delay occurs in the direction of coil de-energization, this type of contact is alternatively known as a normally-open, off-delay:

The following is a timing diagram of this relay contact's operation:

Next we have the normally-closed, timed-open (NCTO) contact. This type of contact is normally closed when the coil is unpowered (de-energized). The contact is opened with the application of power to the relay coil, but only after the coil has been continuously powered for the specified amount of time. In other words, the direction of the contact's motion (either to close or to open) is identical to a regular NC contact, but there is a delay in the opening direction. Because the delay occurs in the direction of coil energization, this type of contact is alternatively known as a normally-closed, on-delay:

The following is a timing diagram of this relay contact's operation:

Finally we have the normally-closed, timed-closed (NCTC) contact. Like the NCTO contact, this type of contact is normally closed when the coil is unpowered (de-energized), and opened by the application of power to the relay coil. However, unlike the NCTO contact, the timing action occurs upon de-energization of the coil rather than upon energization. Because the delay occurs in the direction of coil de-energization, this type of contact is alternatively known as a normally-closed, off-delay:

The following is a timing diagram of this relay contact's operation:

Time-delay relays are very important for use in industrial control logic circuits. Some examples of their use include:
  • Flashing light control (time on, time off): two time-delay relays are used in conjunction with one another to provide a constant-frequency on/off pulsing of contacts for sending intermittent power to a lamp.
  • Engine autostart control: Engines that are used to power emergency generators are often equipped with "autostart" controls that allow for automatic start-up if the main electric power fails. To properly start a large engine, certain auxiliary devices must be started first and allowed some brief time to stabilize (fuel pumps, pre-lubrication oil pumps) before the engine's starter motor is energized. Time-delay relays help sequence these events for proper start-up of the engine.
  • Furnace safety purge control: Before a combustion-type furnace can be safely lit, the air fan must be run for a specified amount of time to "purge" the furnace chamber of any potentially flammable or explosive vapors. A time-delay relay provides the furnace control logic with this necessary time element.
  • Motor soft-start delay control: Instead of starting large electric motors by switching full power from a dead stop condition, reduced voltage can be switched for a "softer" start and less inrush current. After a prescribed time delay (provided by a time-delay relay), full power is applied.
  • Conveyor belt sequence delay: when multiple conveyor belts are arranged to transport material, the conveyor belts must be started in reverse sequence (the last one first and the first one last) so that material doesn't get piled on to a stopped or slow-moving conveyor. In order to get large belts up to full speed, some time may be needed (especially if soft-start motor controls are used). For this reason, there is usually a time-delay circuit arranged on each conveyor to give it adequate time to attain full belt speed before the next conveyor belt feeding it is started.
The older, mechanical time-delay relays used pneumatic dashpots or fluid-filled piston/cylinder arrangements to provide the "shock absorbing" needed to delay the motion of the armature. Newer designs of time-delay relays use electronic circuits with resistor-capacitor (RC) networks to generate a time delay, then energize a normal (instantaneous) electromechanical relay coil with the electronic circuit's output. The electronic-timer relays are more versatile than the older, mechanical models, and less prone to failure. Many models provide advanced timer features such as "one-shot" (one measured output pulse for every transition of the input from de-energized to energized), "recycle" (repeated on/off output cycles for as long as the input connection is energized) and "watchdog" (changes state if the input signal does not repeatedly cycle on and off).









The "watchdog" timer is especially useful for monitoring of computer systems. If a computer is being used to control a critical process, it is usually recommended to have an automatic alarm to detect computer "lockup" (an abnormal halting of program execution due to any number of causes). An easy way to set up such a monitoring system is to have the computer regularly energize and de-energize the coil of a watchdog timer relay (similar to the output of the "recycle" timer). If the computer execution halts for any reason, the signal it outputs to the watchdog relay coil will stop cycling and freeze in one or the other state. A short time thereafter, the watchdog relay will "time out" and signal a problem.
  • REVIEW:
  • Time delay relays are built in these four basic modes of contact operation:
  • 1: Normally-open, timed-closed. Abbreviated "NOTC", these relays open immediately upon coil de-energization and close only if the coil is continuously energized for the time duration period. Also called normally-open, on-delay relays.
  • 2: Normally-open, timed-open. Abbreviated "NOTO", these relays close immediately upon coil energization and open after the coil has been de-energized for the time duration period. Also callednormally-open, off delay relays.
  • 3: Normally-closed, timed-open. Abbreviated "NCTO", these relays close immediately upon coil de-energization and open only if the coil is continuously energized for the time duration period. Also called normally-closed, on-delay relays.
  • 4: Normally-closed, timed-closed. Abbreviated "NCTC", these relays open immediately upon coil energization and close after the coil has been de-energized for the time duration period. Also callednormally-closed, off delay relays.
  • One-shot timers provide a single contact pulse of specified duration for each coil energization (transition from coil off to coil on).
  • Recycle timers provide a repeating sequence of on-off contact pulses as long as the coil is maintained in an energized state.
  • Watchdog timers actuate their contacts only if the coil fails to be continuously sequenced on and off (energized and de-energized) at a minimum frequency.

2.contactors

When a relay is used to switch a large amount of electrical power through its contacts, it is designated by a special name: contactor. Contactors typically have multiple contacts, and those contacts are usually (but not always) normally-open, so that power to the load is shut off when the coil is de-energized. Perhaps the most common industrial use for contactors is the control of electric motors.
The top three contacts switch the respective phases of the incoming 3-phase AC power, typically at least 480 Volts for motors 1 horsepower or greater. The lowest contact is an "auxiliary" contact which has a current rating much lower than that of the large motor power contacts, but is actuated by the same armature as the power contacts. The auxiliary contact is often used in a relay logic circuit, or for some other part of the motor control scheme, typically switching 120 Volt AC power instead of the motor voltage. One contactor may have several auxiliary contacts, either normally-open or normally-closed, if required.
The three "opposed-question-mark" shaped devices in series with each phase going to the motor are called overload heaters. Each "heater" element is a low-resistance strip of metal intended to heat up as the motor draws current. If the temperature of any of these heater elements reaches a critical point (equivalent to a moderate overloading of the motor), a normally-closed switch contact (not shown in the diagram) will spring open. This normally-closed contact is usually connected in series with the relay coil, so that when it opens the relay will automatically de-energize, thereby shutting off power to the motor. We will see more of this overload protection wiring in the next chapter. Overload heaters are intended to provide overcurrent protection for large electric motors, unlike circuit breakers and fuses which serve the primary purpose of providing overcurrent protection for power conductors.
Overload heater function is often misunderstood. They are not fuses; that is, it is not their function to burn open and directly break the circuit as a fuse is designed to do. Rather, overload heaters are designed to thermally mimic the heating characteristic of the particular electric motor to be protected. All motors have thermal characteristics, including the amount of heat energy generated by resistive dissipation (I2R), the thermal transfer characteristics of heat "conducted" to the cooling medium through the metal frame of the motor, the physical mass and specific heat of the materials constituting the motor, etc. These characteristics are mimicked by the overload heater on a miniature scale: when the motor heats up toward its critical temperature, so will the heater toward its critical temperature, ideally at the same rate and approach curve. Thus, the overload contact, in sensing heater temperature with a thermo-mechanical mechanism, will sense an analogue of the real motor. If the overload contact trips due to excessive heater temperature, it will be an indication that the real motor has reached its critical temperature (or, would have done so in a short while). After tripping, the heaters are supposed to cool down at the same rate and approach curve as the real motor, so that they indicate an accurate proportion of the motor's thermal condition, and will not allow power to be re-applied until the motor is truly ready for start-up again.
Shown here is a contactor for a three-phase electric motor, installed on a panel as part of an electrical control system at a municipal water treatment plant:
Three-phase, 480 volt AC power comes in to the three normally-open contacts at the top of the contactor via screw terminals labeled "L1," "L2," and "L3" (The "L2" terminal is hidden behind a square-shaped "snubber" circuit connected across the contactor's coil terminals). Power to the motor exits the overload heater assembly at the bottom of this device via screw terminals labeled "T1," "T2," and "T3."
The overload heater units themselves are black, square-shaped blocks with the label "W34," indicating a particular thermal response for a certain horsepower and temperature rating of electric motor. If an electric motor of differing power and/or temperature ratings were to be substituted for the one presently in service, the overload heater units would have to be replaced with units having a thermal response suitable for the new motor. The motor manufacturer can provide information on the appropriate heater units to use.
A white pushbutton located between the "T1" and "T2" line heaters serves as a way to manually re-set the normally-closed switch contact back to its normal state after having been tripped by excessive heater temperature. Wire connections to the "overload" switch contact may be seen at the lower-right of the photograph, near a label reading "NC" (normally-closed). On this particular overload unit, a small "window" with the label "Tripped" indicates a tripped condition by means of a colored flag. In this photograph, there is no "tripped" condition, and the indicator appears clear.
As a footnote, heater elements may be used as a crude current shunt resistor for determining whether or not a motor is drawing current when the contactor is closed. There may be times when you're working on a motor control circuit, where the contactor is located far away from the motor itself. How do you know if the motor is consuming power when the contactor coil is energized and the armature has been pulled in? If the motor's windings are burnt open, you could be sending voltage to the motor through the contactor contacts, but still have zero current, and thus no motion from the motor shaft. If a clamp-on ammeter isn't available to measure line current, you can take your multimeter and measure millivoltage across each heater element: if the current is zero, the voltage across the heater will be zero (unless the heater element itself is open, in which case the voltage across it will be large); if there is current going to the motor through that phase of the contactor, you will read a definite millivoltage across that heater:
This is an especially useful trick to use for troubleshooting 3-phase AC motors, to see if one phase winding is burnt open or disconnected, which will result in a rapidly destructive condition known as "single-phasing." If one of the lines carrying power to the motor is open, it will not have any current through it (as indicated by a 0.00 mV reading across its heater), although the other two lines will (as indicated by small amounts of voltage dropped across the respective heaters).
  • REVIEW:
  • contactor is a large relay, usually used to switch current to an electric motor or other high-power load.
  • Large electric motors can be protected from overcurrent damage through the use of overload heaters and overload contacts. If the series-connected heaters get too hot from excessive current, the normally-closed overload contact will open, de-energizing the contactor sending power to the motor.